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Example 3.2.1. Discuss the continuity of the function f : [0, 1] — R defined by

_ K4
{xxl if.’EG(O,l], ﬂ‘VVI —FQ(> = ﬁLM =0

f(z) = - > (t
0 ifxz=0. LS

foy =777 /

Solution. f(x) is continuous on (0,1). f(z) is also continuous at x = 1, but lim f(z) does

+
not exists. So f is not continuous at = = 0. o ]
%[o)?— 0 [,(W) F(ﬁ —Qtww =-t % ﬁ‘)
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Theorem 3.2.1 (Intermediate Value Theorem or Intermediate Value Property). Suppose f
is a continuous function on [a,b] and K is a number between f(a) and f(b). Then there exist
a number ¢, between a and b, such that f(c) = K.

Geometrically, the Intermediate Value Theorem says that any horizontal line y =
crossing the y-axis between the numbers f(a) and f(b) will cross the curve y = f(x) at least
once over the interval [a, b].

VA

(a, f(a))
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Application: Root Finding

If f(x) is continuous on [a, b], f(a) and f(b) change sign, then, there exists at least one
root of the function, that is, exists at least one ¢ € (a,b), such that f(c) =

Example 3.2.2. Show that f(x) = 2° — x + 1 has a root.
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Solution. Aim: find a, b, such that f(a), f(b) change sign. Since

and f is continuous on [—2,0]. By Intermediate value theorem, there exists ¢ € (—2,0),

such that f(c) =

[ ]
Remark. Although we don’t know how to find the root, we know a root exists.

hen 2€v0 f(}() i —{—(/XB

Example 3.2.3. 1. All odd functions have a root.

o JY.
HG) 22
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2. All polynomials of odd degrees have a root.

1
Exercise 3.2.1. Show that 2¥ = — has a solution.
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Theorem 3.2.2 (Extreme Value Theorem) If f(zx)is contlnuoﬁs on [a, b], then f must attain

"

an absolute maximum and absolute minimum, that is, there exist ¢, d in [a, b| such that

fle) < f(x) < f(d),
forall z € [a,b).

Example 3.2.4. Absolute extreme for f(z) = 23 — 2122 + 135z — 170 for various closed
intervals.

L0 L)
A A
4 Absolute 4 Absolute
150+ maximum — 150+ maximum Il
1 f12)= 154 T f5=105
I I / |
T T /
100+ 100+ /\J /
L 1 /
T I /
+ 1 /
T Absolute T / /
50—+ . 50+ | f9H=73
T / m;mElum T | Absolute
L 2= 1 minimum
1 5 10 + 5 10
— = > x
a=2 b=12 a= 4 b=10
(A) [a, b] = [2,12] (B) [a, b] = [4,10]
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Exercise 3.2.2 (Hard!). Derive the extreme value theorem from the intermediate value the-
orem.

Remark. Caveat: The intermediate value theorem and the extreme value theorem only work

1

on finite and closed intervals! E.g. Consider the previous example on R, and — on R or on
T

(0,1).

B9,

Cor w)

Question: How to find the absolute maximum and minimum?

Ans: (for “good” functions) Differentiation!
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MATH1520 University Mathematics for Applications Fall 2021

Chapter 4: Differentiation I

Learning Objectives:

(1) Define the derivatives, and study its basic properties.

(2) Study the relationship between differentiability and continuity.

(3) Use the constant multiple rule, sum rule, power rule, product rule, quotient rule and
chain rule to find derivatives.

(4) Explore logarithmic differentiation.

4.1 Motivation & Definition

Motivation from physics: velocity Suppose an object is moving along x-axis from the
origin to right. Let S = S(t) be the position of the object at time ¢. What is the average
velocity of this object from ¢t = 1 to t = 2?

)

4-1
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Change of position

A locity fromt =1tot =2 =
verage velocity from o Change of time

_AS

T At
_S(2)-5(@1)
21

= slope of secant line passing through (1, 5(1)) and (2, S(2))

Question: What is the instantaneous velocity at ¢t = 1?

S(1+At)—S(1)
At
Let At — 0, the instantaneous velocity at ¢t = 1 is defined to be

rn e S+ AE) = S(1)
SO A

Idea: Average velocity fromt =1tot =1+ At is

, where At is small.

which is called the derivative of S at ¢ = 1. S’(1) describes the rate of change of S(t)
att = 1.

Remark. Terminology: The term “velocity” takes the direction of motion into account; it
can be positive or negative. The term “speed” only takes into account the rate of change,
disregarding the direction. It is the absolute value of the velocity.

Definition 4.1.1. The derivative of f(z) is the function

R @
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The process of computing the derivative is called differentiation, and we say that f(x) is

differentiable at = = z if f'(z() exists; that is, lim f(@o + Az) = f(zo)
Az—0 Ax

Remark. 1. By definition, if f(z¢) is not well-defined, we cannot define f’(z¢). So f(x)
must not be differentiable at x = xy.

exists.

2. Another equivalent formula:

\ / . flxo+Az) — f(wo) . f(z) = f(wo)
—‘/A/F;O(")c f (1‘0) - Alglcrg() Ax - IILH}O r — X '
3.
L5 LV S (OB ()
A% T —Zo D(
is called difference quotient. & MRWCQ =7 ~>

4. f'(zo) describes the rate of change of f(z) at x = x.

5. When we say that we use the first principle to find derivatives, we mean that we
use the definition (4.1) to find the derivative. However, later we will learn faster
techniques to find derivatives.

Geometrical interpretation of differentiation: f/(z() is the slope of tangent line to the
curve of f(x) at z = xy.

Example 4.1.1. Let f(z) = 22. Then (i) prove that f(x) is differentiable at x = 1; (ii) find
f/(1) and the equation of the tangent line to the graph of f at x = 1.

2
Solution. (i) By the definition, at x = 1 P RS S —x—@ﬁ) ~
/ OV e {0 DR (') i ) SV Sy
U) = Az—0 Ax Az—0 Ax
= lim (24 Ax)
Az—

So, f is differentiable at 1, and f/(1) = 2.

(ii) The tangent line passes through (1, f(1)) = (1, 1) with slope f’(1) = 2. So, the equation
of the tangent line is

y—fQ) _

emm
Thus

y =2z —1.
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Definition 4.1.2. If f(z) : A — R is differentiable at every point x € A, then f(z) is said to
be a differentiable function in A, and the derivative function f’(z) : A — R is well-defined.

Example 4.1.2. Let f(x) = 22. Prove that f(x) is differentiable on R, and find f’(z).

fror £

Solution. For any = € R, —

flo 4+ Ax) — f(z) (z + Ax)? — 22

AT A A ar amrran =
—
So, f is differentiable at x, and f/(z) = 2z. [ ]
Notation: For y = f(z) = 22,
dy df , dy df
"2)=-">=—">=2 "(4) = == = — =2-4=8
fz) dr  dx RS de|,_, dx|,_,

Question Where does the minimum of 22 occur? (Hint: what is the slope of the tangent
line at the minimum?)

1
Example 4.1.3. Let f(x) = L—i_l Using the definition of derivatives, compute f’(z) for
x —_—

x # 1.
Solution. A4l 1
x x x
flzt+An) = flz) = ——— —
C(z-D@+Ar+1)—(z+1)(z+ Az —1)
B (x —1)(z+ Az —1)
B —2Azx
S (z-D(z+Az—1)
Therefore

oo flatAn)— f@) —2
fiz) = Alm Ax = A (= 1)(z+Az —1)
_ Ahxgo(iﬁ _ 2
Jm @D+ Ae—1) ~ (@- 1%
— u
= Qx—l)lm (x+o?<‘1>
DOXDE

= () [%w_()
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Example 4.1.4. Find the derivative of = for x > 0. -
P vative of f(z) = Va for = g = (at L) 4 b)
Solution.
- fle+Ax)—fl@) . VrtAr—Vz X
Alalcrgo Ax Alalceo Ax @*OK)
(W T Az — Va)(Vr T Az + f) _ o
Az—>0 Az(vVz + Az + \/x)
= lim !
Az—0 vz + Az + \/x
1
=5
So, (x%>,:%x*%,x>0 |
> 2
Example 4.1.5. Find the derivative of f(z) = /=. 3 (3 _ C”\ ,\[o>(p\ tab 4'9)
Hint: a® — b3 = (a — b)(a® + ab + b?). Q b=
Solution. For any x # 0,
. flz+Az) — f(x) . VT +Ar— Yz
lim = lim
Az—0 Ax  Az—0 Az
~ lm (m— YT) (Vo + Az)? + Vo + Az -z + (I7)?)
Az—0 Az((Vz+Az)2 + Vo + Az -z + (Yx)?)
— lim x+Ar —=x
_éf%o Az((Vx + Ax)2 + ¥z + Az - Yz + (7))
1
= 1
Ar50 (Y + Do) + Vot Bz - V7 + (V1)?
3(Vx)* 3
Forz =0
o 3/ 3
1 J(0+ Az) = J(0) = lim Ar— V0 = lim > does not exist.
Az—0 Ax Az—0 Ax Az—0 (Ag)3
So,

ot existat x = 0, i.e. 27 not differentiable at 0

_2
(xl/?’)’—{é 5, z#0
N
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Example 4.1.6. Discuss the differentiability of f(z) = |z]. = i—x
Solution. For xzg > 0,
lim fxo+ Az) — f(x0) _ lim (ro+Az) —z _ L
Az—0 Azx Az—0 Az
For ¢ < 0,
. flzo+ Az) — f(zo) —(xo + Az) — (—x0)
A Ad =7 iz, Av =t
For ¢y = 0.
lim LOFAD SO ATy
Az—0+ Ax Az—0+ Ax
g OFAD—FO) oy AT
Ax—0— Ax Az—0- Ax

1#£—1,s0 f is not differentiable at x = 0. So,

1 ifx >0

) b

n %Low") e (|z)’ = { undefined if z = 0.
£5>0 p% —1 if z <0,

»NG

4.2 Properties of derivatives

4.2.1 Differentiation and Continuity

Proposition 1. f(z) is differentiable at z = x9 = f(z) is continuous at = = z.

Proof. Suppose f'(xp) = lim f(@) = f(z0)

exists, then
T—T0 Tr — X0

Lim oo ooy Jim (@) = o)) = Jim, (W<—>)

N _
o = Jim 10 ic(()%) - lim (2 — 2p)
= f’(:ﬁo) -0=0.

So, lim f(x) = lim (f(x) — f(z0)) + lim f(wo) = 0+ [(0) = f(xo), that is, [(x) is

Tr—TQ
continuous at x.

X Wi x 2@
o K< ©

4-6
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The converse is not true. For example, let f(z) = |z|. It is not differentiable at x = 0 but is
continuous at x = 0.

Exercise 4.2.1. Let

f(a) = {””’“’2_ L Hz2l

11—z ifx<1

bow F0) = i (20 = 0 Lin £ = Lir (-3

(a) Show that f(x) is continuous at = = 1.

¥=>(* ¥ x>
(b) Show that f(x) is differentiable everywhere except x = 1, and -0
2z, ifz>1 A () =0 —
f'(z) = { undefined, ifz =1 X‘:’V)( ]ﬂ ) ﬁb)
/ j(l ) Q{) -1, ifr<1 -
- ) (ter) % > z
F@= dn 0 g Rato0be g g (170 aers ok
NG | -z N
b¥=>0 A% oF X 2K J A X /tm
4.2.2 Differentiation and Arithmetic Operations
me C2+zﬂ>
Theorem 2. Let f(x) and g(x) be differentiable functions. Then oy \;:D
= =
(1) Sum rule: (f+9)(x) = f'(z) + (). | \'_@iﬁ
L §c\fox¥\c° ﬁ/‘m
(2) Difference rule: (f —g)'(z) = f'(z) — ¢'(x). S99 M50~
(Leibwiz\ @ Productrule: [ (fg)(2) = f'(x)glx) + f(x)g(x). {ﬂ
vule sl \
. I\ (o _ f@g(@) - [(2)g () Le»“oﬂ'z
(4) Quotient rule: <g) () = )9 g(cg(x));g ) p (‘,QQV\V(J\ QE/OW\ tw |
vole * Coha vu <
Proof. (1)

= lim
Az—0 ACE/
. fla+Ar)—f(x) Y. = glz+ Azr) —g(z)
= lim + 1l
Az—0 Ax Az—0 Ax
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flz+ Ar)g(x + Az) — f(z)g(x)

Az—0 Ax
o @ AR+ An)— [ + Aw)g(x) + (o + An)g(x) - f(2)g()
Axz—0 Az
i @t Ba)gla + A0) — S+ Aalgla) | f(o+ Aag(a) — f@)g(x)
Az—0 Az Az—0 Ax
Az) — Az) —
- ooy A, g [lor I )
o gt A gl) . fatda)— @)
= Jdm fle+ Ae) - lim = + Am, Au i 9(@)
= f(x)g'(x) + f'(z)g ().
Remark. Here we used:
g(x) is differentiable at z = g(x) is continuous at x
so, I f(u+Az) = ().
O]

Exercise 4.2.2. Prove other rules using the first principle.

Remark. 1. The product rule is more commonly referred to as the Leibniz rule.

Caveat: (f-g) # - ¢!
2. The quotient rule (4) can be derived from the Leibniz rule together with the chain rule
(Section 4.3).

4.2.3 Derivatives of Elementary Functions

Theorem 3 (Constant functions).

f@) =k = fl@)=0

Proof.
f'(x) = lim f(z+Az) - f(z) = lim k—Fk = 0.

= = 1
Az—0 Ax Az—0 Az
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As a consequence, we have

(kf(x)) = (k) f(x) + kf'(z) = kf'(z),| forany constant k.

— = X
Remark. It can also be proved by the first principle. 5‘,5/ Fx) ﬂ 40X ~X
! = PRSI
) m{i’:a o<

Theorem 4 (The Power Rule). \

(%) = ax®"',| whenever it is well-defined, a € R. / <)
P = LR
~ o+ xX
Proof. We will only prove the special case when n is an integer. ¥
Recall — 2X ,
Pyt = ()@ T " T YT (Y s (e
So — s

(z4+Az)"—z" = (z+ Az —2)(z+Az)" L+ (z+Az2)" a4 4 (z+ Az)z" 2 42" 71).

We have
(.. (z+Az)"—a" . 1 o _9 -
ny\ = = n n ce n n
(x > Aligo Ay Alzlvgo((x +Az)" +(x+Ax)" e+ -+ (v 4+ Ax)z" T+ 2"

_ xn—l + l‘n_Z.T 4. '.’L’.’L’n_2 + xn—l _ nxn—l.

O
Remark. Alternatively, combine the fact that 2’ = 1 and the Leibniz rule.
Example 4.2.1.
(%) = 322, relR
1
(Vzx) = ix_%, z > 0. Caution: z can not be 0.
1
(Vz) = gx_g, x # 0. Caution: z can be negative.
(z2) = %:1:%, z > 0.
Theorem 5 (Exponential functions and Logarithmic functions).
(e*) = e”; (ax)’—axlna, a>0,a#1,zeR.
]
(lnaz)/—l' (log, )" = ! a>0,a#1,2>0
oz 8% = e’ ’ ' '
C
/[\ L\ﬂ con E€ deni w1 W
5 e bf\}e— e Cs ]
chec
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L., a— b = /&\@Z>

C(/Mf/
Y
Proof. (Optional!) ZAA
7 I&M(XJ\J
1 In( Az) —1 1 =
(Inz) == <= lim awtoe) —e 1 Dtﬁvt%“
T Az—0 Az x
_In(1 4 42)
< AlglchTzl [m (l'\'v)>
, -z
y n>
1
. 1 o Hla: o — Az
— 3%1H(1+y)y =1, (change variable: y := 22) Wi A% 0
— &X » ¢

— 7}i_r>r(1)(1+y)§ —e ( At nacthre d«{—;mgm> 1=
€

. N° 1 ' 1 whw 4> b
= 711){{1& (1 + z> = ylgé{r(l +y)v =e (change variable:z = ;) 2.y b
M-ﬂ\h 9 v

and lim. ., (1 + %)z = lim (14 y)% = ¢ (definition of e).

y—0— 25 —op
(") =e* <= lim — =e”
Az—0 Ax
Ar 1
~— 1 =1
A;:IEO Ax
. Yy Az
<— lim——"-—-=1 lety = -1
y0 In(I1+y) (lety =e )
In(1 dl
g RUFY) _dlnz

y—0 Yy dx lz=1

For general a: The formulae can be deduced from the preceding special case of a = e using
the chain rule (Section 4.3). O

Remark. 1. Instead of the definition given in Section 2.5, some books use lin% (1+ y)% as the
y—

definition of e.

2. The formula for (e”)’ and the formula for (Inz)’ imply each other, as e” and In z are
“inverse functions” of each other. (Cf. Chapter 5.)

Example 4.2.2.

1
1. (Vo +2% = 3logyz) = (V) + (2%) — 3(logy z) = 5:1;_% +2%In2 — 3
zln
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